Innexin2 gap junctions in somatic support cells are required for cyst formation and for egg chamber formation in Drosophila

نویسندگان

  • Masanori Mukai
  • Hirotaka Kato
  • Seiji Hira
  • Katsuhiro Nakamura
  • Hiroaki Kita
  • Satoru Kobayashi
چکیده

Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood. We have identified a female sterile allele of innexin2 (inx2), which encodes a gap junction protein in Drosophila. In females bearing this inx2 allele, cyst formation and egg chamber formation are impaired. In wild-type germaria, Inx2 is strongly expressed in escort cells and follicle cells, both of which make close contact with germline cells. We show that inx2 function in germarial somatic cells is required for the survival of early germ cells and promotes cyst formation, probably downstream of EGFR pathway, and that inx2 function in follicle cells promotes egg chamber formation through the regulation of DE-cadherin and Bazooka (Baz) at the boundary between germ cells and follicle cells. Furthermore, genetic experiments demonstrate that inx2 interacts with the zero population growth (zpg) gene, which encodes a germline-specific gap junction protein. These results indicate a multifunctional role for Inx2 gap junctions in somatic support cells in the regulation of early germ cell survival, cyst formation and egg chamber formation. Inx2 gap junctions may mediate the transfer of nutrients and signal molecules between germ cells and somatic support cells, as well as play a role in the regulation of cell adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila.

The hedgehog (hh) gene plays a role in regulating cell proliferation and specifying cell identity in diverse systems. We show that hh is expressed at the extreme apical end of Drosophila ovarioles in terminal filament cells and a newly identified group of associated somatic cells. Reducing or ectopically expressing hh affects somatic cells in region 2 of the germarium, 2-5 cells away from the c...

متن کامل

The Role of the Actomyosin Cytoskeleton in Coordination of Tissue Growth during Drosophila Oogenesis

The Drosophila egg chamber is an organ composed of a somatic epithelium that covers a germline cyst. After egg-chamber formation, the germline cells grow rapidly without dividing while the surface of the epithelium expands by cell proliferation [1, 2]. The mechanisms that coordinate growth and morphogenesis of the two tissues are not known. Here we identify a role for the actomyosin cytoskeleto...

متن کامل

Regulation of cell proliferation and patterning in Drosophila oogenesis by Hedgehog signaling.

The localized expression of Hedgehog (Hh) at the extreme anterior of Drosophila ovarioles suggests that it might provide an asymmetric cue that patterns developing egg chambers along the anteroposterior axis. Ectopic or excessive Hh signaling disrupts egg chamber patterning dramatically through primary effects at two developmental stages. First, excess Hh signaling in somatic stem cells stimula...

متن کامل

Multiple roles of the F-box protein Slimb in Drosophila egg chamber development.

Substrate-specific degradation of proteins by the ubiquitin-proteasome pathway is a precise mechanism that controls the abundance of key cell regulators. SCF complexes are a family of E3 ubiquitin ligases that target specific proteins for destruction at the 26S-proteasome. These complexes are composed of three constant polypeptides--Skp1, Cullin1/3 and Roc1/Rbx1--and a fourth variable adapter, ...

متن کامل

cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila

In Drosophila, the dorsal-ventral polarity of the egg chamber depends on the localization of the oocyte nucleus and the gurken RNA to the dorsal-anterior corner of the oocyte. Gurken protein presumably acts as a ligand for the Drosophila EGF receptor (torpedo/DER) expressed in the somatic follicle cells surrounding the oocyte. cornichon is a gene required in the germline for dorsal-ventral sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2011